An optimal transport approach for seismic tomography: application to 3D full waveform inversion

نویسندگان

  • Jizhong Yang
  • Liangguo Dong
  • L Métivier
  • R Brossier
  • Q Mérigot
  • E Oudet
  • J Virieux
چکیده

The use of optimal transport distance has recently yielded significant progress in image processing for pattern recognition, shape identification, and histograms matching. In this study, the use of this distance is investigated for a seismic tomography problem exploiting the complete waveform; the full waveform inversion. In its conventional formulation, this high resolution seismic imaging method is based on the minimization of the L distance between predicted and observed data. Application of this method is generally hampered by the local minima of the associated L misfit function, which correspond to velocity models matching the data up to one or several phase shifts. Conversely, the optimal transport distance appears as a more suitable tool to compare the misfit between oscillatory signals, for its ability to detect shifted patterns. However, its application to the full waveform inversion is not straightforward, as the mass conservation between the compared data cannot be guaranteed, a crucial assumption for optimal transport. In this study, the use of a distance based on the Kantorovich–Rubinstein norm is introduced to overcome this difficulty. Its mathematical link with the optimal transport distance is made clear. An efficient numerical strategy for its computation, based on a proximal splitting technique, is introduced. We demonstrate that each iteration of the corresponding algorithm requires solving the Poisson equation, for which fast solvers can be used, relying either on the fast Fourier transform or on multigrid techniques. The development of this numerical method make possible applications to industrial scale data, involving tenths of millions of discrete unknowns. The results we obtain on such large scale synthetic data illustrate the potentialities of the optimal transport for seismic imaging. Starting from crude initial velocity models, optimal transport based Inverse Problems Inverse Problems 32 (2016) 115008 (36pp) doi:10.1088/0266-5611/32/11/115008 0266-5611/16/115008+36$33.00 © 2016 IOP Publishing Ltd Printed in the UK 1 inversion yields significantly better velocity reconstructions than those based on the L distance, in 2D and 3D contexts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discretized Adjoint State Time and Frequency Domain Full Waveform Inversion: A Comparative Study

This study derives the discretized adjoint states full waveform inversion (FWI) in both time and frequency domains based on the Lagrange multiplier method. To achieve this, we applied adjoint state inversion on the discretized wave equation in both time domain and frequency domain. Besides, in this article, we introduce reliability tests to show that the inversion is performing as it should be ...

متن کامل

Double-Difference Waveform Inversion of 4D Ocean Bottom Cable Data: Application to Valhall, North Sea

Changes in reservoir properties resulting from extracting hydrocarbons and injecting fluid are critical to optimize production. These properties can be characterized using waveform inversions of time-lapse seismic data. The conventional approach for analysis using waveform tomography is to take the difference of seismic inversion obtained using baseline and subsequent time-lapse datasets that a...

متن کامل

Seismic waveform tomography in the frequency-space domain: selection of the optimal temporal frequency for inversion

Frequency-space domain full-wave tomography is a promising technique for delineating detailed subsurface structure with high resolution. However, this method requires criteria for the selection of a set of optimal temporal frequency components, to achieve stability in the sequence of inversion processes together with computational efficiency. We propose a method of selecting optimal temporal fr...

متن کامل

Seismic waveform inversion in the frequency domain, Part 1: Theory and verification in a physical scale model

Seismic waveforms contain much information that is ignored under standard processing schemes; seismic waveform inversion seeks to use the full information content of the recorded wavefield. In this paper I present, apply, and evaluate a frequency-space domain approach to waveform inversion. The method is a local descent algorithm that proceeds from a starting model to refine the model in order ...

متن کامل

Computation of 3D Frequency-Domain Waveform Kernels for c(x,y,z) Media

Seismic tomography, as typically practiced on both the exploration, crustal, and global scales, considers only the arrival times of selected sets of phases and relies primarily on WKBJ theory during inversion. Since the mid 1980’s, researchers have explored, largely on a theoretical level, the possibility of inverting the entire seismic record. Due to the ongoing advances in CPU performance, fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016